

Rat Genome Database rgd.mcw.edu

PhenoMiner: Integrating Phenotype Measurement Values for Multiple Strains

Mary Shimoyama

XVIIIth International Workshop on Genetic Systems in the Rat – Kyoto, Japan

PhenoMiner Project

- Integrates phenotype data from multiple sources: Physgen, NBRP, Literature, Direct Submission
- Standardized formats using ontologies for sample, measurement, method and experimental conditions
- Data mining and presentation tool
- Links to originating data sources
- Comprehensive phenotype profiles for strains, substrains, congenics, knockouts, mutants
- Public repository for researchers to post data funding agency interest
- Development of the rat phenome linking phenotype to genotype

Accessing PhenoMiner

In addition to genomic and genetic data, RGD is an excellent source of information about rat strains and their associated physiology, phenotypes and diseases. Click this icon to learn how to navigate RGD's Phenotypes and Models Portal to find the information you need.

An Introduction to the RatMine Database

RatMine is RGD's newest data warehousing, mining and analysis tool. Click this icon to take a quick tour of RatMine's key features and begin learning how to use this valuable tool.

Endometrial cancer is ranked as the fourth most common malignancy and the eighth leading cause of cancer-related death for women in developed countries. It can be described as either type 1 or type 2, each implicating alterations in distinct sets of pathways. Click here to explore how these changes link to the development of this condition.

Accessing PhenoMiner

HOME DATA GENOME TOOLS DISEASES PHENOTYPES & Phenotypes Strains & Models PhenoMiner Database	PhysGen Knockouts MODEL S COMMUNITY	PhysGen	Help FTP Download Citing RGD Contact Us Keyword
PhenoMiner Database Rat Strains Selection		CURATION WEB	<u>Home</u> > <u>Phenotypes & Models</u>
 Select 1 or more Rat Strains from the list below. Each selection will be used to filter remaining categories. Click the plus (+) sign to expand sub topics. Strains can appear in multiple places in the tree. e.g. SS Sex: male female both Consogenic strain(28) consomic strain(7323) inbred strain(11920) mutant strain(519) outbred strain(14) recombinant inbred strain(678) segregating inbred strain(76) transgenic strain(14) 	S-BN consomics are found u	Experimental Conditions Find data based on a list of a conditions. Examples: diet, atmosphere composition, activity level Select Conditions Measurement Methods Base your query on a list of Measurement methods. Examples: fluid filled catheter, blood chemistry panel Select Methods	

	A ROLL	PhysGe	en Pal	()			
			enouro				Help FTP Download Citing RGD Contact Us
Ph	HOME DATA GENOME TOOLS DISEASES	PHENOTYPES & MODELS	COMMUNI	TY		PhysGen	Keyword O
Rat	Strains Selection				CORATION WEB		
Sex	 Select 1 or more Rat Strains from the list be Each selection will be used to filter remaining. Click the plus (+) sign to expand sub topics. Strains can appear in multiple places in male O female O both • 	low. g categories. the tree. e.g. SS-BN consol	mics are				<u>Home</u> > <u>Phenotypes & Models</u>
	inbred strain(11920) ACI(148) ACI/Eur(4) ACI/NIC(23) ACI/NHok(18) ACI/NHok(18) ACI/NKyo(47) ACI/NKyo(47) ACI/NKyo(33) ACI-Lystbg-Kyo/Kyo(14) ACI/NSlc(20) ACI/SegHsd(21) ACI/SegHsd(9)	Select Rat Strains C	ancel	und u	Experim Find data based of Examples: diet level	ental Conditions on a list of a conditions. t; atmosphere composition, activity Select Conditions ement Methods on a list of Measurement methods. d filled catheter, blood chemistry panel Select Methods	
		Select Rat Strains C	Cancel				

		HOME DATA GENOME TOOLS DISEASES	PhysGen Knockouts PHENOTYPES & MODELS COMMUN
HOME DATA GENOME TOOLS DISEAS Search RGD Grant Resources Yearly Report	PhysGen Knockouts	PhenoMiner Database Phenotypes Selection	
PhenoMiner Database To begin, select a starting point		 Select 1 or more Phenotypes from the list Each selection will be used to filter remain Click the plus (+) sign to expand sub topic 	t below. ning categories. cs.
	Rat Strains Search for data related to one or more rat strains. Examples: congenic strain, ACI, BN Select Strains	 blood measurement(5455) body morphological measurement body temperature(512) cardiovascular measurement(240) liver/biliary measurement(400) renal/urinary measurement(220) 	(4257) 7)
	Phenotypes Query the database by Phenotype. Examples: heart rate, blood cell count Select Phenotypes		
			Select Phenotypes Cancel
			Contact

You are limiting by: Phenotypes (68 records)

You are limiting by: Phenotypes (68 records)

PhenoMiner Database

Phenotypes Selection

You are limiting by: Phenotypes (68 records)

Experiments t	by Phenotype 🐱	Refresh Chart		Customize chart			help
Phenotypes		Strains	Conditions		Measurement Meth	nods A	ge
Min: 0.0 Male 🗹 Fema How To			PhysGen Knockouts	PhysGen	Help FTP Downloa	ad Citing RGD Contact Us	196 days 185 days not specified 201-203 days
	HOME DATA GENOME TOO Phenotypes Strains & Models PhenoMiner Databas	S DISEASES PHENOTYPES PhenoMiner Database Ge (68 experiments)	MODELS COMMUNITY	Download data table	<u>Home</u> > iew expanded data table	Phenotypes & Models New Query	
	Experiments by Phenotype V Phenotypes mammary tumor number Min: 0.0 Max: 11.2 Male V Female V How To V	Refresh Char Strains SPRD.WKY-(D10Rai9 - 30 SPRD.WKY-(D18Woxt) 31 SPRD.WKY-(D18Woxt) 31 SPRD.WKY-(D18Woxt) 32 SPRD/HanZtm - 33 - 17 beta-estradiol (27 0 - 17 beta-estradiol (27 0 - 17 beta-estradiol (27 - 10 - 17 beta-estradiol (27 - 10 - 17 beta-estradiol (27 - 10 - 17 beta-estradiol (27 - 17 beta	L L-D10Rat135ylbmm -D18Rat44ylbmm D-D5Rat114ylbmm Smg) — naive control Smg) — naive control Strain Value: Sex: fr Conditions Value: Sex: fr Conditions Naive control	Itetraphene (DMBA) (65 mg/kg body mass) diol (27.5 mg) bilateral then 17 beta-estradiol (27.5 mg) condition	Measurement Methods visual assessment, ex vivo manual palpitation method caliper method	help Age ♥ 152-162 days ♥ 196 days ♥ 185 days ♥ not specified ♥ 201-203 days	
		RAMMAR Research	Lifestick Refeatick	hciesense hciesense	FC15549199		

Options: View chart Download d	lata table View expanded data table Which	do I want			
Phenotype (Click to Sort)	Strain (Click to Sort) ▼	Sex (Click to Sort)	Value Units (Click to Sort) (Click to S	s Condition 1 (Click to Sort)	Condition 2 (Click to Sort)
mammary tumor number	ACI.COP-(D10Mgh8-D10Rat4)/Shul	female	4.8 tumors	17 beta-estradiol (27.5 mg)	-
mammary tumor number	ACI.COP-(D10Mgh8-D10Rat4)/Shul	female	0.0 tumors	naive control condition	-
time to mammary tumor formation, post insult	ACI.COP-(D10Mgh8-D10Rat4)/Shul	female	145.0 days	17 beta-estradiol (27.5 mg)	-
mammary tumor number	ACI.COP-(D3Mgh16-D3Rat119)/Shul	female	4.3 tumors	17 beta-estradiol (27.5 mg)	-
mammary tumor number	ACI.COP-(D3Mgh16-D3Rat119)/Shul	female	0.0 tumors	naive control condition	
time to mammary tumor formation, post insult	ACI.COP-(D3Mgh16-D3Rat119)/Shul	female	145.0 days	17 beta-estradiol (27.5 mg)	-
mammary tumor number	ACI.COP-(D3Rat130-D3Rat114)/Shul	female	4.5 tumors	17 beta-estradiol (27.5 mg)	-
mammary tumor number	ACI.COP-(D3Rat130-D3Rat114)/Shul	female	0.0 tumors	naive control condition	-
time to mammary tumor formation, post insult	ACI.COP-(D3Rat130-D3Rat114)/Shul	female	145.0 days	17 beta-estradiol (27.5 mg)	-
mammary tumor number	ACI.COP-(D6Rat80-D6Rat146)/Shul	female	2.4 tumors	17 beta-estradiol (27.5 mg)	-
mammary tumor number	ACI.COP-(D6Rat80-D6Rat146)/Shul	female	0.0 tumors	naive control condition	
time to mammary tumor formation, post insult	ACI.COP-(D6Rat80-D6Rat146)/Shul	female	165.0 days	17 beta-estradiol (27.5 mg)	-
mammary tumor number	ACI/SegHsd	female	8.8 tumors	17 beta-estradiol (27.5 mg)	
mammary tumor number	ACI/SegHsd	female	0.0 tumors	ovariectomy, bilateral	then 17 beta-estradiol (27.5 mg)
mammary tumor number	ACI/SegHsd	female	0.0 tumors	naive control condition	-
mammary tumor number	ACI/SegHsd	female	5.6 tumors	17 beta-estradiol (27.5 mg)	-
mammary tumor number	ACI/SegHsd	female	7.0 tumors	17 beta-estradiol (27.5 mg)	
mammary tumor number	ACI/SegHsd	female	0.0 tumors	naive control condition	
time to mammary tumor formation, post insult	ACI/SegHsd	female	136.0 days	17 beta-estradiol (27.5 mg)	-
time to mammary tumor formation, post insult	ACI/SegHsd	female	145.0 days	17 beta-estradiol (27.5 mg)	-
time to mammary tumor formation, post insult	ACI/SegHsd	female	145.0 days	17 beta-estradiol (27.5 mg)	
mammary tumor number	BN/SsNHsd	female	0.0 tumors	17 beta-estradiol (27.5 mg)	
mammary tumor number	COP/CrCrl	female	0.1 tumors	17 beta-estradiol (27.5 mg)	-
mammary tumor number	COP/CrCrl	female	0.0 tumors	naive control condition	-
mammary tumor number	SPRD.WKY-(D10Rat91-D10Rat135)/lbmm	female	9.2 tumors	7,12-dimethyltetraphene (DMBA) (65 mg/kg body mass)	-
mammary tumor growth rate	SPRD.WKY-(D10Rat91-D10Rat135)/lbmm	female	0.5 cm/weel	7,12-dimethyltetraphene (DMBA) (65 mg/kg body mass)	-
mammary tumor growth rate	SPRD.WKY-(D10Rat91-D10Rat135)/lbmm	female	0.5 cm/weel	7,12-dimethyltetraphene (DMBA) (65 mg/kg body mass)	-

Daguelta

Sample Data

PRG

Daguilta

_

	Heip FIP Download Uiting KGD Contact US
	PhysGen Keyword
HOME DATA	ENOME TOOLS DISEASES PHENOTYPES & MODELS KNOCKOUTS COMMUNITY
Genes QTLs S	trains Markers ESTs Maps Ontologies Sequences References FTP Download Submit Data
	Reference Report
Related Tools: PubMed MGD	Ovary-intact, but not ovariectomized female ACI rats treated with 17beta-estradiol rapidly develop mammary carcinoma.
	Shull JD, Spady TJ, Snyder MC, Johansson SL, Pennington KL,
	Citation: Shull JD, etal., Carcinogenesis. 1997 Aug;18(8):1595-601.
	Status: NON-CURATED REFERENCE
	Abstract (<u>?</u>)
	We have examined the ability of 17beta-estradiol (E2) to induce development of mammary cancers in the female ACI rat. Continuous treatment with E2, delivered through release from s.c. Silastic tubing implants containing 27.5 mg crystalline hormone, resulted in rapid development of palpable mammary tumors in ovary-intact ACI rats. In a population of 21 E2-treated rats, palpable tumors were first observed following 99 days treatment and 100% of the treated population developed tumors within 197 days. The median and mean times to appearance of first palpable tumor were 143 and 145 days respectively. All mammary tumors were classified as carcinomas and invasive features were observed. Circulating E2 levels in the treated animals at the time of sacrifice averaged 185 pg/ml serum. Mammary tumors were not observed in ovary-intact female ACI rats that were not treated with E2. This is the first report indicating that this naturally occurring estrogen is capable of inducing mammary cancers in the ACI rat strain. Mammary carcinoma did not develop in a population of 11 ovariectomized female ACI rats treated with E2 for a period of 140 days. Circulating E2 levels in the treated ovariectomized animals averaged 207 pg/ml. These data indicate that the ovary modulates estrogen-mediated mammary carcinogenesis in this rat strain. Both ovary-intact and ovariectomized female ACI rats displayed similar susceptibilities to E2-induced pituitary tumors and hyperprolactinemia. Pituitary weight was increased 6.0-fold in ovary-intact ACI rats and 5.3-fold in ovariectomized female rats. Circulating prolactin levels averaged 2318 ng/ml in E2-treated, ovary-intact rats and 2285 ng/ml in E2-treated, ovariectomized ACI rats. These data indicate that estrogen-induced hyperprolactinemia is not the sole factor leading to development of mammary cancers in the E2-treated ACI rat.
	Show data curated from this reference
	External Database Links
	PubMed
	<u>Shuli JD, etal., Carcinogenesis, 1997 Aug;18(8):1595-601.</u> (9276635)

mamm mamm

Daguilta

Measurement and Methods

Phenotype ont id	Phenotype	Formula	Phenotype Notes	Value	Units	SEM	SD	Method ont id	Method	Method Site	Method duration (secs)	Method Notes
CMO:343	mammary tumor number	-	-	8.8	tumors	1.4	-	MMO:162	visual assessment, ex vivo	-	-	
CMO:343	mammary tumor number	-	-	0.0	tumors	-	-	MMO:162	visual assessment, ex vivo	-	-	
CMO:343	mammary tumor number	-		0.0	tumors	-	-	MMO:162	visual assessment, ex vivo	-		
CMO:343	mammary tumor number	-	-	0.0	tumors	-	-	MMO:162	visual assessment, ex vivo	-	-	-
CMO:343	mammary tumor number	-		5.6	tumors	-	-	MMO:162	visual assessment, ex vivo	-	-	
CMO:343	mammary tumor number	-	-	0.1	tumors	-	0.4	MMO:162	visual assessment, ex vivo	-	-	-
CMO:343	mammary tumor number	-		0.0	tumors	-	-	MMO:162	visual assessment, ex vivo	-	-	

Rad

Н

Γ	Experimental Conditions]		
Pheno ont i	d ontid term	Conc ordinality duration	lition 1 value uni	its notes	applicationMethod	ont id	term	ordinality	Co duration	ndition : value	2 units r	notes ap	pplicationMethod	Method Notes
CMO:34	XCO:92 17 beta-estradiol	1 -	27.5 mg		cyrstalline implant			-		-				
CMO:34	XCO:92 17 beta-estradiol	1 -	27.5 mg	-	cyrstalline implant	-	•	-	-	-				-
CMO:34	XCO:95 ovariectomy, bilateral	1				XCO:92	17 beta- estradiol	2		27.5	mg -	- слу	ystalline implant	
CMO:34	XCO:56 naive control condition						-	-	-					
CMO:34	XCO:92 17 beta-estradiol	1 -	27.5 mg		crystalline implant	-		-	-					
CMO:34	XCO:92 17 beta-estradiol	1 -	27.5 mg		crystalline implant		-		-					-
CMO:34	XCO:56 naive control condition													

P R R H

- Compare phenotypes across experiments for one or more strains
- Compare a phenotype across ages for one or more strains
- Compare phenotype values for a set of substrains
- Comprehensive phenotype values for a single or multiple strains
- Compare results from multiple methods

- Compare phenotypes across strains
- Compare a phenotype act

- Compare phenotype values for a set of substrains
- Comprehensive phenotype values for a single or multiple strains
- Compare results from multiple methods

- Compare phenotypes across experiments for one or more strains
- Compare a phenotype across ages for one or more strains
- Compare phenotype values for a set of substrains
- Comprehensive phenotype values for a single or multiple strains
- Compare results from multiple methods

- Compare phenotypes acr strains
- Compare a phenotype ac
- Compare phenotype value

- Comprehensive phenotype values for a single or multiple strains
- Compare results from multiple methods

- Compare phenotypes across experiments for one or more strains
- Compare a phenotype across ages for one or more strains
- Compare phenotype values for a set of substrains
- Comprehensive phenotype values for a single or multiple strains
- Compare results from multiple methods

• Compare phenotypes across experiments for one or more strains

Compare results from multiple methods

- Compare phenotypes across experiments for one or more strains
- Compare a phenotype across ages for one or more strains
- Compare phenotype values for a set of substrains
- Comprehensive phenotype values for a single or multiple strains
- Compare results from multiple methods

- Compare phenotypes across experiments for one or more strains
- Compare a pheno
- Compare phenoty
- Comprehensive p strains
- Compare results

- Compare phenotypes across experiments for one or more strains
- Compare a phenotype across ages for one or more strains
- Compare phenotype values for a set of substrains
- Comprehensive phenotype values for a single or multiple strains
- Compare results from multiple methods

 \bullet

- Compare phenotypes across experiments for one or more strains
- **Compare a phenotype across ages for one or more strains** •
- air carbon dioxide content (7% for 7 mins) air oxygen content (12% for 7 mins) air oxygen content (21%). resting on treadmill - running on treadmill (1.6 m/min for 3 mins) - walking on treadmill (0.8 m/min for 3 mins) Compare phen (60 BLOOD PRESSURE (mmH) Comprehensiv strains 60-MEAN ARTERIAL 30. **Compare resul** 13BNIMCH 138HIMCW FHHEIMER HHEIMEN HEIMON 13BHIMON FHHEIMACH FHHEIMER FHHEIMACH 136WMCW 138NIMCH 138NIMON FHHEIME Par EthilEuthicat (13BHURICH **EXPERIMENTS**

- Compare phenotypes across experiments for one or more strains
- Compare a phenotype across ages for one or more strains
- Compare phenotype values for a set of substrains
- Comprehensive phenotype values for a single or multiple strains
- Compare results from multiple methods

- Compare phenotypes across experiments for one or more strains
- Compare a phenotype across ages for one or more strains

Future Developments

Data

- Physgen data complete integration
- NBRP data complete integration of existing data, continued updates
- Literature
 - integration of data from all QTL papers
 - integration of data from papers characterizing inbred, mutant, congenic and knockout strains
- Researcher submissions completion of online software for data submission

Future Developments

Data Mining and Visualization

- Improved searching and query building
- Customization of bar charts
- Side by side chart viewing
- Dot plots for multiple phenotypes
- Statistical analysis tools
- Uploading and visualization of own data

<u>Links with Other Tools</u>

- Direct links from strain reports, strain medical records
- Direct links from QTL reports for parental, congenic strains
- Links from strain variation tracks on Gbrowse
- Links from SNPlotyper

	P	RA						<u></u>	R		
Value: 7.0 tumors SD: 5.3 Sex: female Conditions: 17 beta-estradiol (27.5 mg) Age: 259 days M.Method: visual assessment, ex vivo			Strain: SPRD/HanZtm Value: 11.2 tumors SD: 0.5 Sex: female Conditions: 7,12-dimethyltetraphene (DMBA) (65 mg/kg b Age: 186-191 days M.Method: visual assessment, ex vivo	ody mass)	train: COP/CrO alue: 0.1 tumor D: 0.4 ex: female onditions: 17 b ge: 259 days I.Method: visual	C rl s eta-estradiol (assessment,	(27.5 mg) ex vivo	Strain: BN/SsNHsd Value: 0.0 tumors Sex: female Conditions: 17 beta-estradiol (27.5 mg) Age: 196 days M.Method: visual assessment, ex vivo			
Position	Allele	Sequence	P	olymorphic	ACI/Seg.	WKY/NCrl	SPRD/Ha)P/Crl	6 isd	SS/JrHsdMcwi	
Chr 5:12990423	G/A	TCAGCACAAAATCAAA [G/A] TTCTGGGAGATTCAGT	ACAACCCCACTGCGATATCAAAA FATTTGTGTAGTCCTCTCTGCTTCT		АА	Gu	> ^^	AA	GG	AA	
Chr 5:13271842	G/A	TTCATGAAATCCCATT <mark>[G/A]</mark> TAACAATGTTCTATTT	TTATTGATTGTTTGTAGTACCTGTG FAGGCAATCTCTTTTGGTTCCAAAG		GG	GG	AA	NN	NN	AA	
Chr 5:13327089	T/C	AGAAAGGGAAGGGAG [T/C] AAACACAAAATTATTA	AAACACTGTAATTAAAATATAATCT AACACATATTAAAGCTTACACCAGA		сс	сс	сс	сс	π	сс	
Chr 5:13437823	T/C	TCAAAAGCTTTTGTCA [T/C] ATTCAGTGGCATCTCC	AAAGCAGCAAGACAAGTAACTAACA CTTTAGTGAAATCACACCAATCTCT		сс	сс	π	сс	π	π	
Chr 5:13500275	A/G	ACTGTATTTTTATT([▲∕G] GAAAGAGTGTTATG <i>i</i>			GG	GG	GG	GG	AA	GG	
Chr 5:13739291	G/A	ТАТАТАСААДААСТ([G/A] ТААССАТАТТАААА <i>А</i>	Mamtr1 region		AA	АА	GG	AA	GG	GG	
Chr 5:13917908	C/A	АТСТСТСААССТСТ". [С/А] СТСАТСААССААТСА			сс	АА	AA	сс	СС	АА	
Chr 5:14088518	T/C	GCTGAGCCATCTTTCC [T/C] GACTCATTTCTGCCC	CAACCTCCTTTCTTCAGTCTCTTAA IGCCCTTGAATCCCTCAGGAGAGAG		π	сс	π	π	π	сс	
Chr 5:14090305	G/T	TTAATTTTACTCATA([G/T] AAACATTTCATGCAA(CAACAACCCAATTTTTCATTTAAAG CAGACAGCTTACAGACTCATGGAAT		GG	Π	GG	GG	GG	Π	
Chr 5:14181884	С/Т	TACTTTAAGTATATAG [C/T] CAATTTATTTAAAAAA	CATTGTAGTGATATTTGCTATGTAT		π	Π	π	NN	NN	сс	
Chr		ATATGTTCTGGCCCC	TTTTCATGGTTTGTCTCATAGTGAG								

• Links from SNPlotyper

Acknowledgments

RGD

Howard Jacob Melinda Dwinell Diane Munzenmaier Elizabeth Worthey Shirng-Wern Tsaih Rajni Nigam **Rene Lopez Stan Laulederkind Tom Hayman Tim Lowry** Shur-jen Wang **Jeff DePons** Weisong Liu Pushkala Jayaraman

NBRP

Tadao Serikawa Takashi Kuramoto Tomoji Mashimo Birger Voight

Physgen

Allen Cowley Howard Jacob Andrew Greene Julian Lombard David Mattson Anne Kwitek Melinda Dwinell

Special Thanks to Rat Researchers worldwide!

RGD is funded by grant HL64541 from the National Heart, Lung, and Blood Institute on behalf of the NIH Phenominer is funded by grant HL094271